Innovation, Quantum-AI Technology & Law

Blog over Kunstmatige Intelligentie, Quantum, Deep Learning, Blockchain en Big Data Law

Blog over juridische, sociale, ethische en policy aspecten van Kunstmatige Intelligentie, Quantum Computing, Sensing & Communication, Augmented Reality en Robotica, Big Data Wetgeving en Machine Learning Regelgeving. Kennisartikelen inzake de EU AI Act, de Data Governance Act, cloud computing, algoritmes, privacy, virtual reality, blockchain, robotlaw, smart contracts, informatierecht, ICT contracten, online platforms, apps en tools. Europese regels, auteursrecht, chipsrecht, databankrechten en juridische diensten AI recht.

Berichten met de tag Stanford RQT
Mauritz Kop Expert at Eric Schmidt backed von Neumann Commission

Stanford, CA – Mauritz Kop, the Frm. Founding Executive Director of the Stanford Center for Responsible Quantum Technology (RQT), has accepted an invitation to serve as an expert on The von Neumann Commission. The announcement, made on February 1, 2025, positions Kop to contribute to a critical global dialogue at the intersection of quantum computing, artificial intelligence, and grand strategy. The Oxford-based, independent research commission is backed by the Eric and Wendy Schmidt Fund for Strategic Innovation and other key institutions. The von Neumann Commission’s inquiry will be multifaceted, addressing the core technical prospects for quantum acceleration, its strategic implications for the global balance of power, the risks to strategic stability, and the necessary governance frameworks to ensure responsible development. The Commission's investigation is set against the backdrop of a new technological paradigm—the convergence of quantum and AI—and is informed by the historical legacy of its namesake, the strategic vision of its sponsors, and the vital perspectives of its experts.

The Quantum-AI Convergence: A New Technological Paradigm

At the heart of The von Neumann Commission's inquiry is the powerful synergy between quantum computing and artificial intelligence. This convergence is not merely additive; it is a cross-pollination that promises to redefine the boundaries of both fields. To understand this, one must first grasp the fundamental difference between classical and quantum computation.

Classical computers, from supercomputers to smartphones, process information using bits, which can exist in one of two definite states: 0 or 1. Quantum computing, by contrast, operates on the principles of quantum mechanics. It uses qubits, which can exist in a state of superposition—representing both 0 and 1 simultaneously. This property, combined with entanglement, where the state of one qubit is instantly correlated with another regardless of distance, allows quantum computers to explore a vast computational space and perform parallel calculations on an exponential scale.

Professor Kop’s Expertise as a von Neumann Commissioner

As a Commission expert, Professor Kop will contribute a multidisciplinary perspective grounded in his extensive research on the law, ethics, societal impact, and policy of quantum and AI. Professor Kop has advised numerous governments and international organizations on their quantum technology strategies, including the United States (notably the Department of State on its quantum foreign policy, U.S. Senators on quantum governance, and as a Guest Professor at the US Air Force Academy), Canada, the United Kingdom, and The Netherlands, as well as multilateral institutions such as the World Economic Forum (WEF), UNESCO, CERN, and the OECD. He has also provided expert guidance to the European Union on landmark AI legislation, including the EU AI Act and the Data Act. His specific contributions to The von Neumann Commission will draw from his expertise in:

● Geostrategy, Democracy, and Authoritarianism: Analyzing the strategic struggle between democratic and authoritarian models of technology governance. This includes his work in Foreign Policy and the Stanford-Vienna Transatlantic Technology Forum on forming a strategic tech alliance among democratic nations and his lectures at institutions like the Hoover Institution on the impact of quantum technologies on the global balance of power.

● Comparative Regulatory and Innovation Models: Analyzing the legal and policy differences between the US, EU, and China. His scholarship, including his "Ten principles for responsible quantum technology" in IOP Quantum Science and Technology, his “Establishing a Legal-Ethical Framework for Quantum Technology” at Yale University, and foundational articles at Harvard Berkman Klein and Nature, dissects these competing models and provides a crucial framework for navigating global strategic competition.

● China’s Quantum and AI Strategy: Providing in-depth analysis of China's legal, ethical, and policy landscape for quantum technologies. This includes evaluating the country's national strategy, its approach to dual use civil-military fusion, its influence on U.S. and E.U. national and economic security through China’s Digital Silk Road Initiative, and its comparative strengths and weaknesses in the global technology race, as analyzed in his “Towards an Atomic Agency for Quantum-AI” scholarship at the European Commission’s Futurium.

● National and Economic Security: Examining the role of export controls, rare earth and critical mineral supply chain vulnerability as published at the Stanford Program on Geopolitics, Technology, and Governance at CISAC / FSI, intellectual property law as published at Berkeley and the Max Planck Institute, and cybersecurity in managing the geostrategic dimensions of quantum technology. His work in these areas, including his contributions to forums like Tel Aviv University's Cyber Week, provides critical insights into protecting strategic assets.

● Standards and Governance: Contributing to the development of robust standards, certification protocols, and performance benchmarks to ensure the safety, reliability, and ethical implementation of these powerful technologies, drawing from lessons from nuclear governance, and from his conferences and seminars at Stanford, Fordham Law, Arizona State, Copenhagen, the Center for Quantum Networks (CQN) and the Centre for International Governance Innovation (CIGI) in Waterloo.

By integrating these insights, Kop will aid the Commission in formulating a holistic understanding of the challenges pertaining to systemic rivalry and great power competition ahead.

Meer lezen
2nd Annual Stanford Responsible Quantum Technology Conference: Summary of Core Themes and Selected Highlights

The 2nd annual Stanford Responsible Quantum Technology Conference convened by the Stanford Center for Responsible Quantum Technology and expertly orchestrated by its Executive Director Mauritz Kop, provided a broad overview of the latest developments in quantum technology, with a focus on quantum simulation. It brought together a diverse and interdisciplinary group of experts from the US and Europe – united in their interest in responsible development and use of second-generation quantum technologies – to discuss innovations, challenges, and future directions in this emerging space. The conference included both in-depth presentations and far-ranging panel discussions, with artistic and musical performances interspersed as alternative spaces of approximation and exploration.

The following write-up by Constanze Albrecht does not aim to offer a comprehensive overview of the wealth of perspectives and insights shared at the conference. Instead, it introduces some of the conference’s core themes by summarizing some of the anchor presentations and is intended as an invitation to readers to dive deeper into the conference materials and videos posted online.

Technological Advancements and Market Dynamics

One of the standout presentations was “Project Quantum Leap: Quantum Computing Innovation—Patenting Trends Innovation & Policy Implications” by Mateo Aboy. This presentation offered an in-depth empirical study of the intellectual property landscape in quantum computing. He emphasized the necessity of evidence-based IP studies to inform policy and innovation governance in this rapidly evolving field. Aboy revealed significant growth in quantum computing patents over the past two decades, particularly noting an uptick since 2014, with patents mainly focuses on physical realizations, quantum circuits, error correction, and quantum algorithms. This surge reflects the increased involvement of diverse entities, including universities, startups, and established corporations.

The presentation further highlighted the critical role of international harmonization in patent laws and the importance of public disclosures in advancing technology. Mateo Aboy also explored the state-of-the-art applications of quantum computing in healthcare, emphasizing its potential to revolutionize both fundamental and clinical research despite being in its early stages. He concluded with a call for a balanced regulatory approach that promotes technological advancement while safeguarding against potential risks, underscoring the need for proactive policy measures.

Quantum Use Cases in Healthcare and Life Sciences

In this context, a fascinating panel discussion moderated by Hank Greely offered a deep dive into the applications and use cases of quantum technology in the health and life sciences. Mateo Aboy, Glenn Cohen, Timo Minssen and Victoria Ward examined the transformative potential of quantum computing, sensing, and simulation in enhancing diagnostic tools, personalizing treatment plans, and accelerating drug discovery processes. The discussions also addressed market dynamics, highlighting the competitive landscape and the strategic positioning of key players in the quantum technology market. The panelists underscored the importance of fostering a robust innovation ecosystem that supports the growth of startups and encourages collaboration between academia, industry, and government bodies.

Providing insight into the technical aspects of quantum technology innovation, Mark Brongersma, Professor in the Department of Materials Science and Engineering at Stanford University, presented cutting-edge research at the intersection of materials science and quantum technology. His presentation focused on developing and analyzing nanostructured materials for nanoscale electronic and photonic devices. Key research topics included nanophotonics, which enhances light manipulation at the subwavelength scale, and microcavity resonators, which confine light to boost light-matter interactions. This pioneering work paves the way for future innovations that could revolutionize current sensing and simulation technologies.

Meer lezen
Nature Physics publishes A Call for Responsible Quantum Technology by Urs Gasser, Eline De Jong and Mauritz Kop

The leading journal Nature Physics has published "A Call for Responsible Quantum Technology," a significant Comment piece authored by a transatlantic team of scholars: Urs Gasser, Eline De Jong, and Mauritz Kop. Published on April 9, 2024, the article serves as a manifesto of the Stanford Center for Responsible Quantum Technology (RQT). It presents a compelling argument for proactively establishing ethical and societal guardrails for quantum technology (QT) while the field is still in its formative stages.

Citation: Gasser, U., De Jong, E. & Kop, M. A call for responsible quantum technology. Nat. Phys. 20, 525–527 (2024). https://doi.org/10.1038/s41567-024-02462-8

This foundational work builds upon the Stanford Center for RQT's prior scholarship, including the foundational paper "Towards Responsible Quantum Technology" published at Harvard and the University of California, and the "10 Principles for Responsible Quantum Innovation" published at IOP Science & Technology. All three authors are members of the Stanford RQT Center, which is founded and directed by Kop, who also served as the senior and corresponding author on the Nature publication. The article crystallizes the Center's crucial mission: to guide the development of quantum technologies in a direction that is safe, ethical, and beneficial for humanity and the planet.

Watch Urs Gasser and Eline De Jong present their Nature publication at the Stanford Responsible Quantum Technology Conference here: https://youtu.be/2vA9fID-7SA?si=MV67C9jN34UlsmuW&t=1279

The Core Argument: A Proactive Stance on Quantum Governance

The central thesis of "A Call for Responsible Quantum Technology" is both clear and urgent: the time to consider and implement governance frameworks for QT is now. The authors draw a crucial lesson from the history of other powerful innovations, such as nuclear fission and artificial intelligence (AI), where ethical, legal, and social considerations were often addressed reactively, "once the genie is already out of the bottle." Given the potentially transformative and disruptive power of quantum, the article argues that repeating this mistake is not an option.

A Framework for Responsible Quantum Innovation

To navigate this complex landscape, the authors propose a comprehensive framework for Responsible Quantum Technology. This is not a call for premature, heavy-handed legislation but for a systematic approach to anticipate and manage the ethical, legal, social, and policy implications (ELSPI) throughout the entire QT lifecycle.

The framework is designed to be operationalized through a set of quantum-specific guiding principles, which the authors organize into three functional categories, known as the SEA principles:

  • Safeguarding: Principles focused on mitigating downside risks, requiring that issues like information security and malicious dual-use scenarios are considered from the outset of research and development.

  • Engaging: Principles designed to foster robust interaction between innovators and diverse stakeholders to address complex issues like intellectual property, market competition, and equitable access.

  • Advancing: Principles that prioritize and incentivize the development of QT applications that serve desirable societal goals and the common good.

This layered approach, spanning technical, ethical, and socio-legal considerations, provides a navigational aid for researchers, funders, policymakers, and industry leaders, offering both an "issue spotter" to identify potential challenges and a "compass" to guide the technology's trajectory.

The Authors of the Nature Publication on Responsible Quantum Technology

The Nature article is a product of deep interdisciplinary expertise, authored by three leading figures at the Stanford Center for Responsible Quantum Technology:

Urs Gasser is a distinguished Professor at the Technical University of Munich (TUM), where he is Dean of the TUM School of Social Sciences and Technology. A Fellow at the Stanford RQT Center, he was previously the Executive Director of the Berkman Klein Center for Internet & Society at Harvard University. His research focuses on the societal and regulatory implications of emerging technologies, bringing a wealth of experience in technology law and policy.

Eline De Jong is a Dutch philosopher and ethicist serving as a Fellow at the Stanford RQT Center. She is currently a PhD candidate at the University of Amsterdam, specializing in the philosophy and ethics of quantum technology. Her background includes advising the Netherlands Scientific Council for Government Policy on the societal impact of AI, providing a deep understanding of the co-evolution of technology and society.

Mauritz Kop, the Founding Director of the Stanford RQT Center and the article's senior and corresponding author, is a tech lawyer, policy advisor, and academic whose work focuses on creating sui generis governance frameworks for exponential technologies like AI and quantum. His scholarship, published by leading institutions globally, aims to integrate risk management, regulatory compliance, and safety standards directly into the innovation process.

This collaboration between legal, policy, and ethics scholars underscores the article's central message: ensuring a responsible quantum future requires a concerted, interdisciplinary, and international effort. As the manifesto for the Stanford Center for RQT, Nature’s "A Call for Responsible Quantum Technology" is a foundational text, setting a clear and principled agenda for the global quantum community.

Meer lezen
Princeton University’s Liechtenstein Institute on Self-Determination’s visits Stanford Center for Responsible Quantum Technology

On Wednesday, January 22, 2024, the Stanford Center for Responsible Quantum Technology (RQT) had the distinct pleasure of hosting a delegation from Princeton University’s Liechtenstein Institute on Self-Determination (LISD) for a dynamic discussion on transatlantic technology policy at Stanford Law School. The event was marked by great energy and a profound exchange of ideas, reflecting the shared commitment of both institutions to navigating the complex intersection of emerging technology, global governance, and societal values.

Princeton LISD leadership and their talented International Policy Associates at Stanford RQT

As the host of the meeting, Professor Mauritz Kop had the opportunity to welcome the LISD leadership and their talented International Policy Associates. He provided an overview of the mission of the Stanford RQT, explaining our framework for ensuring that quantum technologies are developed and integrated into society in a manner that is safe, ethical, and equitable. This introduction served as a foundation for a rich and meaningful conversation, where the Princeton fellows posed insightful questions. The discussion traversed a wide spectrum of pressing topics, including the challenges of regulating the suite of quantum technologies, the discovery of quantum use cases in healthcare, the complexities of export controls and quantum materials supply chains, and the crucial interface between AI and quantum computing. Furthermore, we explored the application of universal democratic values and culturally sensitive ethics to these new domains, comparing the innovation systems of the US, EU, and China, and considering the potential for technology to drive both scarcity and abundance on a planetary scale.

Freeman Spogli Institute for International Studies (FSI) and Stanford Graduate School of Business (GSB)

The engagement at the RQT was a cornerstone of the LISD delegation's broader visit to Northern California, which included several high-level meetings across Stanford University. The group’s thank-you message noted their "incredibly enriching visit" and the comprehensive nature of their discussions. Their agenda also included conversations with preeminent scholars Professor Francis Fukuyama and Professor Michael McFaul at the Freeman Spogli Institute for International Studies (FSI), and a meeting with Dean Jon Levin of the Stanford Graduate School of Business (GSB). According to the delegation, these dialogues covered a range of vital geopolitical issues, from the war in Ukraine and a possible attack on Taiwan to Stanford's pivotal role in innovation, highlighting the "multifaceted impact of technology on democracy." The visit also provided an opportunity for the delegation to connect with Princeton alumni in the region.

Collaborating on global challenges and opportunities presented by quantum technologies

The esteemed LISD delegation was led by its senior leadership, including Sophie Meunier, the Acting Director of LISD and a Senior Research Scholar at the Princeton School of Public and International Affairs; Nadia Crisan, the Executive Director of LISD; Jonathan Fredman, a Non-Resident Fellow and former senior leader at the Central Intelligence Agency; and Jana-Alessa Peper, the Institute Assistant who coordinates the IPA program. They were accompanied by the LISD’s International Policy Associates, a cohort of students pursuing careers in foreign policy and international business, who brought a diverse array of academic and professional interests to the discussion.

The dialogue reinforced the critical importance of building bridges between institutions and disciplines. The exchange of perspectives between Stanford’s technology and policy experts and Princeton’s specialists in international affairs and self-determination created a unique and valuable synergy. We extend our sincere thanks to the entire LISD delegation for a stimulating and productive session that has undoubtedly planted the seeds for future collaboration in addressing the global governance challenges and opportunities presented by quantum and other advanced technologies.

Meer lezen